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Abstract

The CORDIC algorithm is commonly used to approximate certain

elementary functions. Many microprocessor and microcontroller

chips without the availability of math coprocessor chips could benefit

from the efficient implementation of this algorithm. The focus of this

work is to report on a specific implementation in assembly code (for

an 8051 microcontroller) that computes the sine and cosine to eleven

bits of accuracy.
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L Introduction

From the early 1970's and into the 1980's, the CORDIC

(Coordinate Rotation Digital Computer) algorithm (first used by Voider

[4]) has been selected for use in many hand-held calculators offering

the multiply, divide, square root, sine, cosine, tangent, arctangent,

sinh, cosh, tanh, arctanh, In, and exp functions [1]. The CORDIC

algorithm's usefulness for these calculators can be seen in that all of

these functions can be approximated using the same set of iterative

equations (in binary form) [2]
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where m = l, 0, or -1, is a mode indicator and ek are constants stored

prior to the execution of the algorithm and depend on m. Appropriate

selection of initial values, x0 , y0 , z0 , and the sign of each 8k will

generate approximations of each of the elementary functions

mentioned.

Many modern microprocessors and microcontrollers do not

have high speed hardware multipliers on-chip making function

approximation by polynomial methods relatively slow. This explains

the utility and popularity of math coprocessor chips in many
computers. If, in addition, there is some reason that a math

coprocessor chip is not feasible, one might consider using the CORDIC
equations in software to compute elementary functions on the

microprocessor or microcontroller. It would make sense to write this

code in assembly language to maximize the speed of execution.

The two-fold task of this report is to include as much of the

theory behind the CORDIC iterations (1) as is necessary and to give an

example of the CORDIC algorithm in assembly code written for the

Intel Corp. 8051 microcontroller. The 8051 does have an on-chip
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multiplier. However, since the 8051 has only an eight bit multiplier

(requiring multiple precision multiplication), the use of polynomial

approximation algorithms to approximate the elementary functions

may not be faster than the CORDIC iterations.

Since we merely intend to demonstrate the effectiveness of the

CORDIC algorithm, only sine and cosine functions will be considered.

This work was sponsored by the US Bureau of Mines (BOM) in

support of their efforts in computer-assisted underground coal mining.

2. Instructions for Use of the 8051 Code to Compute Sine

and Cosine

The theory behind the CORDIC algorithm is elegantly presented

in [2] and will not be repeated except to mention that on page 322

line 3, x0 should equal K not 1/K.

Equations 2 specify fourteen iterations of the CORDIC algorithm

with constants and initial values defined for the computation of sine

and cosine only. After completion of the fourteenth iteration, xl4 and

y14 will give the approximations to cosine and sine, respectively. This

will give the sine and cosine of any angle, 0, between 0 and n/2. This

result will be accurate to approximately ±2
-11 ~ ±0.000488. Angles

between x/2 and 2n can be handled by appropriate domain reduction.
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xQ = K, y0 = 0, and z0 = 6

A negative aspect of the CORDIC algorithm is that even if the

user wants only the sine and not the cosine (or vice versa), the
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algorithm must compute the undesired quantity as well as the desired

one. Note as well that, if one wanted to make the result more accurate

(or less accurate), a simple increase (or decrease) in the number of

iterations is not sufficient. One must also change the value of K as well

as the number of ek 's stored in memory.

The assembly language program (called CORDIC and listed in the

Appendix) declares the following three variables as two-byte (one-

word) public variables: ?Angle_16?byte, ?Sine_16?byte, and

?Cosine_ 1 6?byte

.

Here is the typical way CORDIC can be used: The calling

program desires to compute the Sine or Cosine of a 16-bit (one-word)

quantity in radians called 6. The calling program stores 0 in the two

bytes of ?Angle_16?byte, storing the least significant byte at

?Angle_16?byte and the most significant byte at ?Angle_16?byte+l

.

The CORDIC program requires 6 to be a positive number in radians

between 0 and 2k. Since the largest possible value of 6 , 2k, has three

bits to the left of the decimal point, the calling program must send 9

with the decimal point assumed to be between bit location 13 and bit

location 12 for the 16-bit 9 (with numbering of locations from 0 to

15). In other words, the input, 9, has a fixed decimal point location

assumed by CORDIC.

3. Two Examples of How 0, the Input to CORDIC, Must Be
Represented

Example 1: 0 - 2k

2k in binary form is 1 IO.OIOOIOOOIOOOO2 . So, if one wanted the sine

of 9 when 9 = 2k, the calling program would put 00010000 at

?Angle_ 1 6?byte and 11001001 at ?Angle_16?byte+l. Then CORDIC
would be executed after which the sine and cosine would be found as

16-bit public variables in locations ?Sine_16?byte, and
?Cosine_ 1 6?byte

.

Example 2: 9 = 0.2984 radians
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Since 0.2984io = 0.01001 10001 IOOI2, the calling program would put

10001100 (8C16) at ?Angle_16?byte and 00001001 (09 1 6) at

?Angle_ 1 6?byte+ 1

.

4 An Example of a Comparison of the Approximation for

Sine and Cosine Using CORDIC to the "True" Values

As a simple example of the operation of the CORDIC algorithm,

assume that 6 = 0.2984 radians as in section 3, example 2. Computing

the sine and cosine using the CORDIC algorithm we get that x14 =

O.IIIIOIOOIOIIOOOIOIOI2 and y14 = 0.0100101 1001 1 1 1 1001001 2 .

These are approximations for the "exact" values, cosO.2984 =

O.IIIIOIOOIOIOIIIIIIOI2 and sin0.2984 = 0.0100101 10100001

1

2 .

A comparison of the above two sets of binary numbers shows that the

CORDIC algorithm is accurate only to about the eleventh significant

binary digit as claimed in section 2. This is because we iterated only

fourteen times. One can chose to iterate any number of times up to

and including sixteen for varying degrees of accuracy (as long as the

appropriate changes in the constants of equations 2 are made). NIST

chose a level of accuracy for the algorithm to be that which seems as

sufficient for calculations involving the positioning of underground coal

mining machines. If it is too accurate or too slow in execution, one

can always sacrifice accuracy for speed.

5. Conclusion

The general operation of the CORDIC algorithm has been given

with the focus on a specific implementation in 8051 assembly code to

compute the sine and cosine to eleven bits of accuracy.

This work can assuredly be expanded. It would be interesting to

use a form of the CORDIC algorithm that allows for multiplication [3],

making use of the 805 l's on chip multiplier. Also useful would be to

compare the performance of CORDIC with that of polynomial methods

of approximating elementary functions.

The source code listed in the appendix is in the public domain

and will be made available to all who request it from the author.
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& Appendix

NAME CORDIC
PUBLIC ?Angle_ 1 6?byte ,?Cosine_ 1 6?byte ,?Sine_ 1 6?byte

CORDIC_CODE SEGMENT CODE
CORDIC_DATA SEGMENT DATA
RSEG CORDIC_DATA
?Angle_16?byte: DS 2

?Cosine_16?byte: DS 2

?Sine„16?byte: DS 2

K: DS 1

XTMP_0: DS 1

XTMP_1 : DS 1

YTMP_0: DS 1

YTMP_1 : DS 1

X_0: DS 1

X_l: DS 1

Y_0: DS 1
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Y_l: DS
Z_0: DS
Z_1 : DS
E_0: DS
E_1 : DS
RSEG
EJDO:

DB
DB
DB

1

1

1

1

1

CORDIC_COD£
DB 22H, 19H,0D6H,0EH,0D7H,07H,0FBH,03H
0FFH,01H,00H,01H,80H,00H,40H,00H

20H,00H, 10H,00H,08H,00H,04H,00H

02H,00H,01H,00H

Angle_16:

MOV X_0,#6FH

MOV X_1,#13H
MOV Y_0,#00H

MOV Y„1,#00H

MOV R2,#0

CLR C
BIT.

MOV A,?Angle_ 1 6?byte
A
SUBB A,#44H
MOV Z_0,A

MOV A,?Angle_16?byte+l

SUBB A,#32H

MOV Z_1,A

JC Add_PiDiv2

;NOW CHECK IF THE ANGLE IS

MOV R2,#2

MOV A,Z_0

INITIALIZE X[0]

INITIALIZE Y[0]

INITIALIZE SIGN INDICATOR
;REGISTER AS POSITIVE FOR
;BOTH SINE AND COSINE.

;CLEAR THE BORROW (CARRY)

;PLACE LOWER BYTE OF ANGLE IN

;SUBTRACT LOWER BYTE BY PI/2

;PLACE RESULT IN LOWER BYTE
OF Z[0]

;PLACE UPPER BYTE OF ANGLE IN

ACCUM
;SUBT (WITH BORROW) UPPER
BYTE OF PI.

;PLACE RESULT IN UPPER BYTE
OF Z[0]

;IF BORROW SET, THE ANGLE
;WAS [O.PI/2).

IN [PI/2, PI), IF NOT CONTINUE
INITIALIZE SIGN INDICATOR
;REGISTER POSITIVE FOR SINE

;NEGATIVE FOR COSINE.

;PLACE LOWER BYTE OF ANGLE IN

;ACCUMULATOR
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SUBB A,#44H

MOV Z_0,A

MOV A,Z_1

SUBB A,#32H

MOV Z_1,A

JC Twos

;NOW CHECK IF THE
CONTINUE
MOV R2,#3

MOV A,Z_0

SUBB A,#44H

MOV Z_0,A

MOV A,Z_1

SUBB A,#32H

MOV Z_1 ,A

JC Add_PiDiv2

;IF WE GET THIS FAR,

MOV R2,#l

MOV A,Z_0

SUBB A,#44H
MOV Z_0,A

;SUBTRACT LOWER BYTE BY PI/2

;PLACE RESULT IN LOWER BYTE
;OF Z[0]

;PLACE UPPER BYTE OF ANGLE IN

ACCUM.
;SUBT WITH BORROW UPPER
;BYTE BY PI/2

;
PLACE RESULT IN UPPER BYTE
;OF Z[0]

;IF BORROW SET, ANGLE WAS IN

;[PI/2,PI)

ANGLE IS BETWEEN PI AND 3PI/2, IF NOT

INITIALIZE SIGN INDICATOR
REGISTER NEGATIVE FOR BOTH
SINE AND COSINE
PLACE LOWER BYTE OF ANGLE IN

ACCUM.
SUBTRACT LOWER BYTE BY PI/

2

PLACE RESULT IN LOWER BYTE
OF Z[0]

PLACE UPPER BYTE OF ANGLE IN

ACCUM
SUBT (WITH BORROW) UPPER
BYTE OF PI

PLACE RESULT IN UPPER BYTE
OF Z[0]

IF BORROW SET, ANGLE WAS IN

[PI,3PI/2)

THE ANGLE IS BETWEEN 3PI/2 AND 2PI.

INITIALIZE SIGN INDICATOR
REGISTER POSITIVE FOR
COSINE AND NEGATIVE FOR
SINE
PLACE LOWER BYTE OF ANGLE IN

ACCUM
SUBTRACT LOWER BYTE BY PI/

2

PLACE RESULT IN LOWER BYTE
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MOV A,Z_1

SUBB A,#32H

MOV Z_1 ,A

Twos:

MOV A,Z_0

CPL A
ADD A,#l

MOV Z„0,A

MOV A,Z„1

CPL A
ADDC A,#0

MOV Z__1 ,A

AJMP Cordic_Algo

Add„PiDiv2:

MOV A,Z_0

ADD A,#44H

MOV Z_0,A

MOV A,Z_1

ADDC A,#32H
MOV Z_1 ,A

;IT IS AT THIS POINT T
Cordic_Algo:

MOV DPTR,#E_00
CONSTANTS
MOV R1,#0

MOV K,#0

;BELOW IS THE CORDIC
Cordic_Loop:

MOV RO,K
MOV XTMP_0,X_0
MOV XTMP_1 ,X_1

MOV YTMP_0,Y_0
MOV YTMP_1 ,Y_1

OF Z[0]

PLACE UPPER BYTE OF ANGLE IN

ACCUM.
SUBT WITH BORROW UPPER
BYTE BY PI/2

PLACE RESULT IN UPPER BYTE
OF Z[0]

;FORM THE TWOS COMPLEMENT
;OF Z[0]

;ADD BACK PI/2

;INIT DATA POINTER AT CORDIC

;INIT THE LOOP COUNTERS

temporarily store K for Shift_XY

temporarily Store X[K]

temporarily Store Y[K]
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MOV A,#0 ;Temporarily Store E[K]

MOVC A,@A+DPTR
MOV E_0,A

MOV A,#l

MOVC A,@A+DPTR
MOV E_1,A

INC DPTR
INC DPTR

;SET UP THE CONTROL REGISTER, R3, THAT WILL CONTAIN INFO

;ON THE NEGATIVITY

;OF X[K], Y[K], AND Z[K]

MOV R3,#0

MOV A,X„1

ANL A,#80H

RL A
ORL A,R3

MOV R3,A

MOV A,Y_1

ANL A,#80H
RL A
RL A
ORL A,R3

MOV R3,A

MOV A,Z„1

ANL A,#80H
RL A
RL A
RL A
ORL A,R3

MOV R3,A

INC R3 ;THIS STEP REQUIRED FOR
;LATER DJNZ INSTRUCTIONS

;COMPUTE Z[K+1]

MOV A,#80H
ANL A,Z_1

JNZ Add_Z
MOV A,E_0

;TEST FOR Z NEGATIVE

;FORM TWOS COMPLEMENT OF
;E[K] IF Z[K] IS POSITIVE,
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;SINCE THEN A SUBTRACTION
;IS REQUIRED

CPL A
ADD A,#l

MOV E_0,A

MOV A,E_1

CPL A
ADDC A,#0

MOV E_1 ,A

Add_Z:

MOV A,E_0

ADD A,Z„0

MOV Z_0,A

MOV A,E_1

ADDC A,Z__1

MOV Z_1 ,A

;COMPUTE X[K+1] AND Y[K+1]

CASE1:

DJNZ R3.CASE2
ACALL Shift_XY

ACALL Twos_Y_Shfted

AJMP Add_XY
CASE2:

DJNZ R3.CASE3
ACALL Abs_X
ACALL Shift_XY

ACALL Twos_X_Shfted

ACALL Twos_Y_Shfted

AJMP Add_XY
CASES:

DJNZ R3.CASE4
ACALL Abs_Y
ACALL Shift_XY

AJMP Add_XY
CASE4:

DJNZ R3,CASES
ACALL Abs_X
ACALL Abs Y
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ACALL Shift.XY

ACALL Twos_X_Shfted

AJMP Add.XY
CASE5:

DJNZ R3.CASE6
ACALL Shift_XY

ACALL Twos_X_Shfted

AJMP Add_XY
CASE6:

DJNZ R3,CASE7

ACALL Abs_X

ACALL Shift_XY

AJMP Add_XY
CASE?:

DJNZ R3.CASE8

ACALL Abs_Y

ACALL Shift_XY

ACALL Twos_X_Shfted

ACALL Twos_Y_Shfted

AJMP Add_XY
CASE8:

ACALL Abs_X

ACALL Abs_Y

ACALL Shift.XY

ACALL Twos_Y_Shfted

Add.XY:

;FORM X[K+1]

MOV A,YTMP_0
ADD A,X_0

MOV X_0,A

MOV A,YTMP_1
ADDC A,X_1

MOV X_1 ,A

;FORM Y[K+1]

MOV A,XTMP_0
ADD A,Y_0

MOV Y_0,A

MOV A,XTMP_1



ADDC A,Y_1

MOV Y_1,A

;INCREMENT K AND TEST IF WE'VE LOOPED 14 TIMES YET
INC K
INC R1
CJNE Rl,#OEH,Long_Jump

AJMP Cordic_End

Long_Jump:

LJMP Cordic_Loop

Cordic_End:

;IF THE COMPUTED ANSWER IS THE NEGATIVE OF THE TRUE
;ANSWER,
;TEST IF ANSWERS ARE NEGATIVE OR POSITIVE AND CHANGE
;SIGN.

MOV A,#3 ;LEAVE SIGN OF
;ANSWERS POSITIVE IF

;THE ANGLE IS [0,PI/2) OR R2 = 0

ANL A,R2

JZ The_End
s

MOV A,#2 SKIP NEGATION OF COSINE
IF ANGLE IS IN

[3PI/2,2PI] OR R2 = 1

ANL A,R2

JZ Twos_Y
Twos_X:

MOV A,X_0 FORM THE TWOS COMPLEMENT
OF THE COSINE

CPL A FOR ANGLES IN [PI/2,3PI/2)

ADD A,#l OR R2 = 2 OR 3.

MOV X_0,A

MOV A,X_1

CPL A
ADDC A#0
MOV X_1,A

Twos_Y:

MOV A,#l SKIP NEGATION OF SINE IF THE
ANGLE IS IN [PI/2, PI)
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ANL A,R2

JZ The_End
MOV A,Y_0

CPL A
ADD A,#l

MOV Y_0,A

MOV A,Y„1

CPL A
ADDC A,#0

MOV Y__1,A

The„End:

AJMP The_Real_End

Abs_X:

CLR C
MOV A,XTMP_0
SUBB A,#l

MOV XTMP_0,A
MOV A,XTMP_1
SUBB A,#0

MOV XTMP_ 1 ,A
RET

Abs_Y:

CLR C
MOV A,YTMP__0

SUBB A,#l

MOV YTMP_0,A
MOV A,YTMP_1
SUBB A,#0

MOV YTMP_1,A
RET

Shift_XY:

MOV A,RO

JZ End_Shift_XY

DEC RO
CLR C
MOV A,XTMP__1

FORM THE TWOS COMPLEMENT
OF THE SINE

FOR ANGLES IN [PI.2PI) OR
EQUIVALENTLY, WHEN R2 = 1

OR 3.
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RRC A
MOV XTMP_1 ,A

MOV A,XTMP_0
RRC A
MOV XTMP_0,A
CLR C
MOV A,YTMP_1
RRC A
MOV YTMP_1 ,A

MOV A,YTMP_0
RRC A
MOV YTMP_0,A
AJMP Shift_XY

End_Shift_XY

:

RET
Twos_X_Shfted:

MOV A,XTMP„0
CPL A
ADD A,#l

MOV XTMP_0,A
MOV A,XTMP_1
CPL A
ADDC A,#0

MOV
RET

XTMP_ 1 ,A

Twos_Y_Shfted:

MOV A,YTMP_0
CPL A
ADD A,#l

MOV YTMP_0,A
MOV A,YTMP_1
CPL A
ADDC A,#0

MOV
RET

YTMP_1 ,A

The_Real_End:

MOV ?Cosine_16?byte,X__0

MOV ?Cosine_ 1 6?byte,X_ 1
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?Sine_ 1 6?byte,Y_0MOV romcjoruy^Lu
OV ?Sine_ 1 6?byte,Y_ 1MOV

END

.
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